Testing the limits of statistical learning for word segmentation.
نویسندگان
چکیده
Past research has demonstrated that infants can rapidly extract syllable distribution information from an artificial language and use this knowledge to infer likely word boundaries in speech. However, artificial languages are extremely simplified with respect to natural language. In this study, we ask whether infants' ability to track transitional probabilities between syllables in an artificial language can scale up to the challenge of natural language. We do so by testing both 5.5- and 8-month-olds' ability to segment an artificial language containing four words of uniform length (all CVCV) or four words of varying length (two CVCV, two CVCVCV). The transitional probability cues to word boundaries were held equal across the two languages. Both age groups segmented the language containing words of uniform length, demonstrating that even 5.5-month-olds are extremely sensitive to the conditional probabilities in their environment. However, neither age group succeeded in segmenting the language containing words of varying length, despite the fact that the transitional probability cues defining word boundaries were equally strong in the two languages. We conclude that infants' statistical learning abilities may not be as robust as earlier studies have suggested.
منابع مشابه
Diagnosis of brain tumor using PNN neural networks
Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...
متن کاملStatistical Aggregation and Hypothesis Testing Mechanisms Interact during Word Learning
Referential utterances are by their nature ambiguous to novice language learners. Each utterance consists of multiple layers of information that must be decoded: 1) the linguistic structure (how the sounds and words should be packaged into meaningful units), 2) the world structure (how people, objects and actions in the world relate to one another and which is the current focus of attention) an...
متن کاملWord Type Effects on L2 Word Retrieval and Learning: Homonym versus Synonym Vocabulary Instruction
The purpose of this study was twofold: (a) to assess the retention of two word types (synonyms and homonyms) in the short term memory, and (b) to investigate the effect of these word types on word learning by asking learners to learn their Persian meanings. A total of 73 Iranian language learners studying English translation participated in the study. For the first purpose, 36 freshmen from an ...
متن کاملThe effects of segmentation and redundancy methods on cognitive load and vocabulary learning and comprehension of English lessons in a multimedia learning environment
The present study was conducted with the aim of the effects of segmentation and redundancy methods on cognitive load and vocabulary learning and comprehension of English lessons in a multimedia learning environment.The purpose of this study is an applied research and a real experimental study. The statistical population of the present study includes all people aged 14 to 16 who are enrolled in ...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental science
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2010